Ultrathin Ceramic Piezoelectric Films via Room-Temperature Electrospray Deposition of ZnO Nanoparticles for Printed GHz Devices
Autor: | Brenda García-Farrera, Luis Fernando Velasquez-Garcia |
---|---|
Přispěvatelé: | Massachusetts Institute of Technology. Microsystems Technology Laboratories |
Rok vydání: | 2019 |
Předmět: |
Electrospray
Materials science 010504 meteorology & atmospheric sciences ZnO nanoparticles 02 engineering and technology flexible electronics 01 natural sciences electrohydrodynamic deposition Deposition (phase transition) General Materials Science Electronics Ceramic Inertial navigation system 0105 earth and related environmental sciences piezoelectricity business.industry 021001 nanoscience & nanotechnology Piezoelectricity 3D printing of ultrathin films Flexible electronics Zno nanoparticles visual_art visual_art.visual_art_medium Optoelectronics 0210 nano-technology business Research Article |
Zdroj: | ACS ACS Applied Materials & Interfaces |
ISSN: | 1944-8252 1944-8244 |
DOI: | 10.1021/acsami.9b09563 |
Popis: | High-frequency devices are key enablers of state-of-the-art electronics used in a wide and diverse range of exciting applications such as inertial navigation, communications, power conversion, medicine, and parallel computing. However, high-frequency additively manufactured piezoelectric devices are yet to be demonstrated due to shortcomings in the properties of the printed transducing material and the attainable film thickness. In this study, we report the first room-temperature-printed, piezoelectric, ultrathin (1 GHz) operation. The films are made of zinc oxide (ZnO) nanoparticles via near-field electrohydrodynamic jetting, achieving film piezoelectricity, without high-temperature processing, through a novel mechanism that is controlled during the deposition. Optimization of the printing process and feedstock formulation results in homogeneous traces as narrow as 213 μm and as thin as 53 nm as well as uniform field films as thin as 91 nm; the printing technique can be used with flexible and rigid, conductive and insulating substrates. The crystallographic orientation of the imprints toward the (100) plane increases if the rastering speed during printing is augmented, resulting in a larger piezoelectric response. The resonant frequency of film bulk acoustic resonators increases monotonically with the rastering speed, achieving transmission values as high as 4.99 GHz, which corresponds to an acoustic velocity of 2094 m/s, similar to the expected transverse value in high-temperature-grown ZnO films. Piezoresponse force microscopy maps of printed field films show local variation in the piezoelectric behavior across the film, with an average piezoelectric response as high as 21.5 pm/V, significantly higher than the d33 piezoelectric coefficient of single-crystal, high-temperature-grown ZnO, and comparable with reported values from ZnO nanostructures. ©2019 |
Databáze: | OpenAIRE |
Externí odkaz: |