Using convolutional neural networks to predict galaxy metallicity from three-colour images

Autor: John F. Wu, Steven Boada
Rok vydání: 2019
Předmět:
Zdroj: Monthly Notices of the Royal Astronomical Society. 484:4683-4694
ISSN: 1365-2966
0035-8711
DOI: 10.1093/mnras/stz333
Popis: We train a deep residual convolutional neural network (CNN) to predict the gas-phase metallicity ($Z$) of galaxies derived from spectroscopic information ($Z \equiv 12 + \log(\rm O/H)$) using only three-band $gri$ images from the Sloan Digital Sky Survey. When trained and tested on $128 \times 128$-pixel images, the root mean squared error (RMSE) of $Z_{\rm pred} - Z_{\rm true}$ is only 0.085 dex, vastly outperforming a trained random forest algorithm on the same data set (RMSE $=0.130$ dex). The amount of scatter in $Z_{\rm pred} - Z_{\rm true}$ decreases with increasing image resolution in an intuitive manner. We are able to use CNN-predicted $Z_{\rm pred}$ and independently measured stellar masses to recover a mass-metallicity relation with $0.10$ dex scatter. Because our predicted MZR shows no more scatter than the empirical MZR, the difference between $Z_{\rm pred}$ and $Z_{\rm true}$ can not be due to purely random error. This suggests that the CNN has learned a representation of the gas-phase metallicity, from the optical imaging, beyond what is accessible with oxygen spectral lines.
13 pages, 6 figures, accepted to MNRAS. Code is available at https://github.com/jwuphysics/galaxy-cnns
Databáze: OpenAIRE