Bohr’s equivalence relation in the space of Besicovitch almost periodic functions

Autor: Teresa Vidal, Juan Matias Sepulcre
Přispěvatelé: Universidad de Alicante. Departamento de Matemáticas, Curvas Alpha-Densas. Análisis y Geometría Local
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: RUA. Repositorio Institucional de la Universidad de Alicante
Universidad de Alicante (UA)
Popis: Based on Bohr’s equivalence relation which was established for general Dirichlet series, in this paper we introduce a new equivalence relation on the space of almost periodic functions in the sense of Besicovitch, $$B(\mathbb {R},\mathbb {C})$$ , defined in terms of polynomial approximations. From this, we show that in an important subspace $$B^2(\mathbb {R},\mathbb {C})\subset B(\mathbb {R},\mathbb {C})$$ , where Parseval’s equality and the Riesz–Fischer theorem hold, its equivalence classes are sequentially compact and the family of translates of a function belonging to this subspace is dense in its own class.
Databáze: OpenAIRE