A hybrid parallel numerical model for wave-induced free-surface flow
Autor: | Athanassios A. Dimas, Iason A. Chalmoukis, Georgios A. Leftheriotis, Guillermo Oyarzun Altamirano |
---|---|
Přispěvatelé: | Barcelona Supercomputing Center |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Computer science
level-set method Lifelong learning Coastal bed shoal Navier–Stokes equations large-eddy simulation immersed boundary method Fluid dynamics Large-eddy simulation media_common.cataloged_instance Fluid mechanics European union media_common Fluid Flow and Transfer Processes Immersed boundary method QC120-168.85 wave refraction and diffraction Mechanical Engineering Level-set method OpenMP coastal bed shoal Condensed Matter Physics Industrial engineering Informàtica::Aplicacions de la informàtica::Aplicacions informàtiques a la física i l‘enginyeria [Àrees temàtiques de la UPC] Flow (mathematics) Descriptive and experimental mechanics Free surface Dinàmica de fluids Thermodynamics MPI QC310.15-319 Navier-Stokes equations Wave refraction and diffraction |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Fluids, Vol 6, Iss 350, p 350 (2021) Fluids Volume 6 Issue 10 |
DOI: | 10.3390/fluids6100350 |
Popis: | An advanced numerical model is presented for the simulation of wave-induced free-surface flow, utilizing an efficient hybrid parallel implementation. The model is based on the solution of the Navier–Stokes equations using large-eddy simulation of large-scale coastal free-surface flows. The three-dimensional immersed boundary method was used for the enforcement of the no-slip boundary condition on the bed surface. The water-air interface was tracked using the level-set method. The numerical model was effectively validated against laboratory measurements involving wave propagation over a flatbed with an elliptical shoal, whose presence induces combined wave refraction and diffraction phenomena. The parallel implementation of the model enabled the efficient simulation of depth-resolved, wave-induced, three-dimensional, free-surface flow the model parallel efficiency and strong scaling are quantitatively demonstrated. |
Databáze: | OpenAIRE |
Externí odkaz: |