Proving Soundness of Extensional Normal-Form Bisimilarities

Autor: Sergueï Lenglet, Piotr Polesiuk, Dariusz Biernacki
Přispěvatelé: Faculty of Mathematics and Computer Science [Wroclaw], University of Wrocław [Poland] (UWr), Proof-oriented development of computer-based systems (MOSEL), Department of Formal Methods (LORIA - FM), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
FOS: Computer and information sciences
Computer Science - Logic in Computer Science
General Computer Science
Computer science
lambda calculus
0102 computer and information sciences
02 engineering and technology
eta-expansion
Mathematical proof
01 natural sciences
Theoretical Computer Science
[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL]
Computer Science::Logic in Computer Science
0202 electrical engineering
electronic engineering
information engineering

Calculus
Equivalence (formal languages)
Equivalence (measure theory)
computer.programming_language
Soundness
Bisimulation
Computer Science - Programming Languages
bisimulation up to context
Proof assistant
congruence
020207 software engineering
control operators
Extensional definition
Logic in Computer Science (cs.LO)
010201 computation theory & mathematics
normal-form bisimulations
Computer Science::Programming Languages
020201 artificial intelligence & image processing
Lambda calculus
computer
Programming Languages (cs.PL)
Zdroj: Mathematical Foundations of Programming Semantics XXXIII
Mathematical Foundations of Programming Semantics XXXIII, Jun 2017, Ljubljana, Slovenia. ⟨10.1016/j.entcs.2018.03.015⟩
Logical Methods in Computer Science
Logical Methods in Computer Science, 2019, 15 (1), pp.31:1-31:24. ⟨10.23638/LMCS-15(1:31)2019⟩
MFPS
Logical Methods in Computer Science, Logical Methods in Computer Science Association, 2019, 15 (1), pp.31:1-31:24. ⟨10.23638/LMCS-15(1:31)2019⟩
ISSN: 1860-5974
DOI: 10.1016/j.entcs.2018.03.015⟩
Popis: International audience; Normal-form bisimilarity is a simple, easy-to-use behavioral equivalence that relates terms in lambda-calculi by decomposing their normal forms into bisimilar subterms. Moreover, it typically allows for powerful up-to techniques, such as bisimulation up to context, which simplify bisimulation proofs even further. However, proving soundness of these relations becomes complicated in the presence of eta-expansion and usually relies on ad hoc proof methods which depend on the language. In this paper we propose a more systematic proof method to show that an extensional normal-form bisimilarity along with its corresponding up to context technique are sound. We illustrate our technique with three calculi: the call-by-value lambda-calculus, the call-by-value lambda-calculus with the delimited-control operators shift and reset, and the call-by-value lambda-calculus with the abortive control operators call/cc and abort. In the first two cases, there was previously no sound up to context technique validating the eta-law, whereas no theory of normal-form bisimulations for a calculus with call/cc and abort has been presented before. Our results have been fully formalized in the Coq proof assistant.
Databáze: OpenAIRE