Structured illumination microscopy using a photonic chip

Autor: Balpreet Singh Ahluwalia, Jean-Claude Tinguely, Olav Gaute Hellesø, Marcel Lahrberg, Firehun Tsige Dullo, Øystein Ivar Helle
Jazyk: angličtina
Rok vydání: 2019
Předmět:
DOI: 10.13140/rg.2.2.15610.95685
Popis: Structured illumination microscopy (SIM) enables live cell, super-resolution imaging at high speeds. SIM uses sophisticated optical systems to generate pre-determined excitation light patterns, and reconstruction algorithms to enhance the resolution by up to a factor of two. The optical set-up of SIM relies on delicate free-space optics to generate the light patterns, and a high numerical aperture objective lens to project the pattern on the sample. These arrangements are prone to miss-alignment, often with high costs, and with the final resolution-enhancement being limited by the numerical aperture of the collection optics. Here, we present a photonic-chip based total internal reflection fluorescence (TIRF)-SIM that greatly reduces the complexity of the optical setup needed to acquire TIRF-SIM images. This is achieved by taking out the light delivery from the microscope and transferring it to a photonic-chip. The conventional glass slide is replaced by the planar photonic chip, that both holds and illuminates the specimen. The chip is used to create a standing wave interference pattern, which illuminates the sample via evanescent fields. The phase of the interference pattern is controlled by the use of thermo-optical modulation, leaving the footprint of the light illumination path for the SIM system to around 4 by 4 cm$^2$. Furthermore, we show that by the use of the photonic-chip technology, the resolution enhancement of SIM can be increased above that of the conventional approach. In addition, by the separation of excitation and collection light paths the technology opens the possibility to use low numerical objective lenses, without sacrificing on the SIM resolution. Chip-based SIM represents a simple, stable and affordable approach, which could enable widespread penetration of the technique and might also open avenues for high throughput optical super-resolution microscopy.
Databáze: OpenAIRE