Well-posedness theory for degenerate parabolic equations on Riemannian manifolds

Autor: Michael Kunzinger, Darko Mitrović, Melanie Graf
Rok vydání: 2017
Předmět:
Zdroj: University of Vienna-u:cris
ISSN: 0022-0396
DOI: 10.1016/j.jde.2017.06.001
Popis: We consider the degenerate parabolic equation $$ \partial_t u +\mathrm{div} {\mathfrak f}_{\bf x}(u)=\mathrm{div}(\mathrm{div} ( A_{\bf x}(u) ) ), \ \ {\bf x} \in M, \ \ t\geq 0 $$ on a smooth, compact, $d$-dimensional Riemannian manifold $(M,g)$. Here, for each $u\in {\mathbb R}$, ${\bf x}\mapsto {\mathfrak f}_{\bf x}(u)$ is a vector field and ${\bf x}\mapsto A_{\bf x}(u)$ is a $(1,1)$-tensor field on $M$ such that $u\mapsto \langle A_{\bf x}(u) {\boldsymbol \xi},{\boldsymbol \xi} \rangle$, ${\boldsymbol \xi}\in T_{\bf x} M$, is non-decreasing with respect to $u$. The fact that the notion of divergence appearing in the equation depends on the metric $g$ requires revisiting the standard entropy admissibility concept. We derive it under an additional geometry compatibility condition and, as a corollary, we introduce the kinetic formulation of the equation on the manifold. Using this concept, we prove well-posedness of the corresponding Cauchy problem.
Comment: 32 pages, proof of Th. 8 corrected
Databáze: OpenAIRE