On the number of maximal paths in directed last-passage percolation
Autor: | Yuval Peres, Harry Kesten, Vladas Sidoravicius, Hugo Duminil-Copin, Fedor Nazarov |
---|---|
Rok vydání: | 2020 |
Předmět: |
Statistics and Probability
Mathematics::Combinatorics Condensed matter physics High Energy Physics::Lattice Probability (math.PR) Lattice (group) maximal paths Directed last-passage percolation Mathematics::Probability Percolation FOS: Mathematics 60C05 Mathematics::Metric Geometry Statistics Probability and Uncertainty Mathematics - Probability Mathematics |
Zdroj: | Annals of Probability Ann. Probab. 48, no. 5 (2020), 2176-2188 |
ISSN: | 0091-1798 |
DOI: | 10.1214/19-aop1419 |
Popis: | We show that the number of maximal paths in directed last-passage percolation on the hypercubic lattice ${\mathbb Z}^d$ $(d\geq2)$ in which weights take finitely many values is typically exponentially large. 15 pages, 3 figures |
Databáze: | OpenAIRE |
Externí odkaz: |