On the number of maximal paths in directed last-passage percolation

Autor: Yuval Peres, Harry Kesten, Vladas Sidoravicius, Hugo Duminil-Copin, Fedor Nazarov
Rok vydání: 2020
Předmět:
Zdroj: Annals of Probability
Ann. Probab. 48, no. 5 (2020), 2176-2188
ISSN: 0091-1798
DOI: 10.1214/19-aop1419
Popis: We show that the number of maximal paths in directed last-passage percolation on the hypercubic lattice ${\mathbb Z}^d$ $(d\geq2)$ in which weights take finitely many values is typically exponentially large.
15 pages, 3 figures
Databáze: OpenAIRE