Pointwise periodic maps with quantized first integrals
Autor: | Anna Cima, Armengol Gasull, Víctor Mañosa, Francesc Mañosas |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions |
Rok vydání: | 2022 |
Předmět: |
Difference equations
Numerical Analysis Quantized first integrals Applied Mathematics Discrete geometry 37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian Lagrangian contact and nonholonomic systems [Classificació AMS] 39 Difference and functional equations::39A Difference equations [Classificació AMS] 52 Convex and discrete geometry::52C Discrete geometry [Classificació AMS] Dynamical Systems (math.DS) Sistemes dinàmics diferenciables Geometria discreta Regular and uniform tessellations Equacions en diferències Matemàtiques i estadística::Equacions diferencials i integrals [Àrees temàtiques de la UPC] Primary: 37C25 39A23. Secondary: 37C55 37J35 52C20 Periodic points Modeling and Simulation 37 Dynamical systems and ergodic theory::37C Smooth dynamical systems: general theory [Classificació AMS] FOS: Mathematics Differentiable dynamical systems Piecewise linear maps Pointwise periodic maps Mathematics - Dynamical Systems |
Zdroj: | Dipòsit Digital de Documents de la UAB Universitat Autònoma de Barcelona UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
ISSN: | 1007-5704 |
DOI: | 10.1016/j.cnsns.2021.106150 |
Popis: | We describe the global dynamics of some pointwise periodic piecewise linear maps in the plane that exhibit interesting dynamic features. For each of these maps we find a first integral. For these integrals the set of values are discrete, thus quantized. Furthermore, the level sets are bounded sets whose interior is formed by a finite number of open tiles of certain regular or uniform tessellations. The action of the maps on each invariant set of tiles is described geometrically. Comment: 46 pages, 20 figures |
Databáze: | OpenAIRE |
Externí odkaz: |