Typicality and entropy of processes on infinite trees

Autor: Ágnes Backhausz, Charles Bordenave, Balázs Szegedy
Přispěvatelé: Institut de Mathématiques de Marseille (I2M), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), In press
Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, In press
ISSN: 0246-0203
1778-7017
Popis: Consider a uniformly sampled random $d$-regular graph on $n$ vertices. If $d$ is fixed and $n$ goes to $\infty$ then we can relate typical (large probability) properties of such random graph to a family of invariant random processes (called "typical" processes) on the infinite $d$-regular tree $T_d$. This correspondence between ergodic theory on $T_d$ and random regular graphs is already proven to be fruitful in both directions. This paper continues the investigation of typical processes with a special emphasis on entropy. We study a natural notion of micro-state entropy for invariant processes on $T_d$. It serves as a quantitative refinement of the notion of typicality and is tightly connected to the asymptotic free energy in statistical physics. Using entropy inequalities, we provide new sufficient conditions for typicality for edge Markov processes. We also extend these notions and results to processes on unimodular Galton-Watson random trees.
21 pages
Databáze: OpenAIRE