Typicality and entropy of processes on infinite trees
Autor: | Ágnes Backhausz, Charles Bordenave, Balázs Szegedy |
---|---|
Přispěvatelé: | Institut de Mathématiques de Marseille (I2M), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, Institut Henri Poincaré (IHP), In press Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, In press |
ISSN: | 0246-0203 1778-7017 |
Popis: | Consider a uniformly sampled random $d$-regular graph on $n$ vertices. If $d$ is fixed and $n$ goes to $\infty$ then we can relate typical (large probability) properties of such random graph to a family of invariant random processes (called "typical" processes) on the infinite $d$-regular tree $T_d$. This correspondence between ergodic theory on $T_d$ and random regular graphs is already proven to be fruitful in both directions. This paper continues the investigation of typical processes with a special emphasis on entropy. We study a natural notion of micro-state entropy for invariant processes on $T_d$. It serves as a quantitative refinement of the notion of typicality and is tightly connected to the asymptotic free energy in statistical physics. Using entropy inequalities, we provide new sufficient conditions for typicality for edge Markov processes. We also extend these notions and results to processes on unimodular Galton-Watson random trees. 21 pages |
Databáze: | OpenAIRE |
Externí odkaz: |