Effect of Surface Chemistry and Associated Protein Corona on the Long-Term Biodegradation of Iron Oxide Nanoparticles In Vivo
Autor: | Julián Pardo, María Moros, Raluca M. Fratila, Grazyna Stepien, Marta Monge, Lucía Gutiérrez, Marcelo de las Heras, Conxita Solans, Juan José Puente Lanzarote, Marta Pérez-Hernández, Jesús M. de la Fuente, Sebastián Menao Guillén |
---|---|
Přispěvatelé: | Diputación General de Aragón, Ministerio de Economía y Competitividad (España), European Commission, European Research Council, Universidad de Zaragoza |
Rok vydání: | 2018 |
Předmět: |
Nanoparticles degradation
Biodistribution Nanoparticle Protein Corona 02 engineering and technology 010402 general chemistry Ferric Compounds 01 natural sciences Iron oxide nanoparticles chemistry.chemical_compound In vivo Tissue Distribution General Materials Science Biodegradation 021001 nanoscience & nanotechnology 3. Good health 0104 chemical sciences chemistry Protein corona Biophysics Nanoparticles 0210 nano-technology Ethylene glycol Protein adsorption |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname |
ISSN: | 1944-8252 1944-8244 |
Popis: | The protein corona formed on the surface of a nanoparticle in a biological medium determines its behavior in vivo. Herein, iron oxide nanoparticles containing the same core and shell, but bearing two different surface coatings, either glucose or poly(ethylene glycol), were evaluated. The nanoparticles' protein adsorption, in vitro degradation, and in vivo biodistribution and biotransformation over four months were investigated. Although both types of nanoparticles bound similar amounts of proteins in vitro, the differences in the protein corona composition correlated to the nanoparticles biodistribution in vivo. Interestingly, in vitro degradation studies demonstrated faster degradation for nanoparticles functionalized with glucose, whereas the in vivo results were opposite with accelerated biodegradation and clearance of the nanoparticles functionalized with poly(ethylene glycol). Therefore, the variation in the degradation rate observed in vivo could be related not only to the molecules attached to the surface, but also with the associated protein corona, as the key role of the adsorbed proteins on the magnetic core degradation has been demonstrated in vitro. This work was supported by Fondo Social de la DGA (grupos DGA), Ministerio de la Economía y Competitividad del Gobierno de España for the public funding of Proyectos I+D+I - Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad (project n. SAF2014-54763-C2-2-R and SAF2014-54763-C2-1-R) and the ERC-Starting Grant 239931-NANOPUZZLE. M.M. acknowledges financial support from European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 660228. R.M.F. acknowledges financial support from Universidad de Zaragoza (JIUZ-2014-CIE-03) and European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 657215. L.G. acknowledges financial support from the Ramón y Cajal subprogram (RYC-2014-15512). |
Databáze: | OpenAIRE |
Externí odkaz: |