Invariants of hypersurface singularities in positive characteristic
Autor: | Thomas Markwig, Yousra Boubakri, Gert-Martin Greuel |
---|---|
Rok vydání: | 2010 |
Předmět: |
Pure mathematics
Determinacy 14B05 32S10 32S25 58K40 Degree (graph theory) General Mathematics Commutative Algebra (math.AC) Mathematics - Commutative Algebra Milnor number Mathematics - Algebraic Geometry Hypersurface FOS: Mathematics Gravitational singularity Algebra over a field Algebraically closed field Algebraic Geometry (math.AG) Equivalence (measure theory) Mathematics |
Zdroj: | Revista Matemática Complutense. 25:61-85 |
ISSN: | 1988-2807 1139-1138 |
DOI: | 10.1007/s13163-010-0056-1 |
Popis: | We study singularities f in K[[x_1,...,x_n]] over an algebraically closed field K of arbitrary characteristic with respect to right respectively contact equivalence, and we establish that the finiteness of the Milnor respectively the Tjurina number is equivalent to finite determinacy. We give improved bounds for the degree of determinacy in positive characteristic. Moreover, we consider different non-degeneracy conditions of Kouchnirenko, Wall and Beelen-Pellikaan in positive characteristic, and we show that planar Newton non-degenerate singularities satisfy Milnor's formula mu=2 delta-r+1. This implies the absence of wild vanishing cycles in the sense of Deligne. Final corrected version; to appear in Revista Matematica Complutense |
Databáze: | OpenAIRE |
Externí odkaz: |