Fault Diagnosis for Multi-energy Flows of Energy Internet: Framework and Prospects

Autor: Tianlei Zang, Mario J. Pérez-Jiménez, Jun Wang, Xiaoguang Wei, Zhennan Fan, Tao Wang, Tao Huang
Přispěvatelé: Universidad de Sevilla. Departamento de Ciencias de la Computación e Inteligencia Artificial, Universidad de Sevilla. TIC193: Computación Natural, National Natural Science Foundation of China
Rok vydání: 2017
Předmět:
Zdroj: idUS. Depósito de Investigación de la Universidad de Sevilla
instname
idUS: Depósito de Investigación de la Universidad de Sevilla
Universidad de Sevilla (US)
Popis: Energy Internet (EI) is an inevitable development trend of energy systems under the background of technology development, environmental pressure and energy transition. Multi-energy flow coupling is one of the key characteristics of the EI, which enhances the interoperability of different types of energy flows while consequently increases the probability of cascading failures. Therefore it is of great significance to study the multi-energy flow fault diagnosis of the EI to ensure its safe and stable operation as well as the continuous energy supply. This paper introduces the concept of multi-energy flow cascading fault of the EI for the first time. The energy internet framework for multi-energy flow cascading fault diagnosis is firstly proposed, and then characteristics of various energy networks in the EI are analyzed from the perspective of fault diagnosis. Finally, future research prospects are discussed. National Natural Science Foundation of China 61703345 National Natural Science Foundation of China 61472328 National Natural Science Foundation of China 51607146
Databáze: OpenAIRE