Data from Epigenetic Regulation of Fanconi Anemia Genes Implicates PRMT5 Blockage as a Strategy for Tumor Chemosensitization

Autor: Yiping He, Jian-Liang Li, Rui Yang, Christopher J. Pirozzi, Michael A. Sun, Kristen Roso, Simranjit X. Singh, Steven W. Li, Changzheng Du
Rok vydání: 2023
DOI: 10.1158/1541-7786.c.6545631
Popis: Strengthened DNA repair pathways in tumor cells contribute to the development of resistance to DNA-damaging agents. Consequently, targeting proteins in these pathways is a promising strategy for tumor chemosensitization. Here, we show that the expression of a subset of Fanconi anemia (FA) genes is attenuated in glioblastoma tumor cells deficient in methylthioadenosine phosphorylase (MTAP), a common genetic alteration in a variety of cancers. Subsequent experiments in cell line models of different cancer types illustrate that this reduced transcription of FA genes can be recapitulated by blockage of Protein Arginine Methyltransferase 5 (PRMT5), a promising therapeutically targetable epigenetic regulator whose enzymatic activity is compromised in MTAP-deficient cells. Further analyses provide evidence to support that PRMT5 can function as an epigenetic regulator that contributes to the increased expression of FA genes in cancer cells. Most notably and consistent with the essential roles of FA proteins in resolving DNA damage elicited by interstrand crosslinking (ICL) agents, PRMT5 blockage, as well as MTAP loss, sensitizes tumor cells to ICL agents both in vitro and in xenografts. Collectively, these findings reveal a novel epigenetic mechanism underlying the upregulated expression of FA genes in cancer cells and suggest that therapeutically targeting PRMT5 can have an additional benefit of chemosensitizing tumor cells to ICL agents.Implications:PRMT5 positively regulates the expression of FA genes. Inhibition of PRMT5 attenuates FA-dependent DNA repair pathway and sensitizes tumor cells to ICL agents.
Databáze: OpenAIRE