Understanding the Mechanism of Short-Range Electron Transfer Using an Immobilized Cupredoxin

Autor: Marco Sola, Dorota Kostrz, Antonio Ranieri, Christopher Dennison, Carlo Augusto Bortolotti, Chan Li, Sachiko Yanagisawa, Katsuko Sato, Stefano Monari, Isabelle Salard, Marco Borsari, Gianantonio Battistuzzi
Přispěvatelé: Dipartimento di Geoscienze [Padova], Universita degli Studi di Padova, Università degli Studi di Modena e Reggio Emilia (UNIMORE), Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE - UMR 8587), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Université d'Évry-Val-d'Essonne (UEVE)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2012
Předmět:
Zdroj: Journal of the American Chemical Society
Journal of the American Chemical Society, American Chemical Society, 2012, 134 (29), pp.11848-11851. ⟨10.1021/ja303425b⟩
134 (2012): 11848–11851. doi:10.1021/ja303425b
info:cnr-pdr/source/autori:Monari, S; Battistuzzi, G; Bortolotti, CA; Yanagisawa, S; Sato, K; Li, C; Salard, I; Kostrz, D; Borsari, M; Ranieri, A; Dennison, C; Sola, M/titolo:Understanding the Mechanism of Short-Range Electron Transfer Using an Immobilized Cupredoxin/doi:10.1021%2Fja303425b/rivista:Journal of the American Chemical Society (Print)/anno:2012/pagina_da:11848/pagina_a:11851/intervallo_pagine:11848–11851/volume:134
ISSN: 1520-5126
0002-7863
DOI: 10.1021/ja303425b
Popis: The hydrophobic patch of, azurin (AZ) from Pseudomonas aeruginosa is an important recognition surface for electron transfer (ET) reactions. The influence of changing the size of this region, by mutating the C-terminal copper binding loop, on the ET reactivity of AZ adsorbed on gold electrodes modified with alkanethiol self-assembled monolayers (SAMs) has been studied. The distance-dependence of ET kinetics measured by cyclic voltammetry using SAMs of variable chain length, demonstrates that the activation barrier for short-range ET is dominated by the dynamics of molecular rearrangements accompanying ET at the AZ-SAM interface. These include internal electric field dependent low amplitude protein motions and the reorganization of interfacial water molecules, but not protein reorientation. Interfacial molecular dynamics also control the kinetics of short-range ET for electrostatically and covalently immobilized cytochrome c. This mechanism therefore may be utilized for short-distance ET irrespective of the type of metal center, the surface electrostatic potential, and the nature of the protein- SAM interaction.
Databáze: OpenAIRE