Jacobi fields and conjugate points for a projective class of sprays
Autor: | S. Hajdú, Tom Mestdag |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Mathematics - Differential Geometry
Pure mathematics Class (set theory) General Mathematics FOS: Physical sciences Context (language use) 01 natural sciences Physics::Fluid Dynamics FOS: Mathematics Second-order ordinary differential equations 0101 mathematics Projective test sprays Mathematical Physics Mathematics Mathematics::Complex Variables 010102 general mathematics Conjugate points Mathematical Physics (math-ph) 34A26 53B40 58E10 010101 applied mathematics conjugate points Mathematics and Statistics Differential Geometry (math.DG) Jacobi fields Mathematics::Differential Geometry projective change |
Zdroj: | MEDITERRANEAN JOURNAL OF MATHEMATICS Mediterranean journal of mathematics |
ISSN: | 1660-5446 1660-5454 |
Popis: | We investigate Jacobi fields and conjugate points in the context of sprays. We first prove that the conjugate points of a spray remain preserved under a projective change. Then, we establish conditions on the projective factor so that the projectively deformed spray meets the conditions of a proposition that ensures the existence of conjugate points. We discuss our methods by means of illustrative examples, throughout the paper. Comment: 18 pages, 3 figures |
Databáze: | OpenAIRE |
Externí odkaz: |