Zeta functions connecting multiple zeta values and poly-Bernoulli numbers
Autor: | Masanobu Kaneko, Hirofumi Tsumura |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Work (thermodynamics)
Pure mathematics Polylogarithm Mathematics - Number Theory Generalization multiple zeta function Primary 11B68 Secondary 11M32 11M99 Special values 11B68 Negative integer multiple zeta value Poly-Bernoulli number FOS: Mathematics Number Theory (math.NT) polylogarithm 11M32 11M99 Multiple zeta function Bernoulli number Mathematics |
Zdroj: | Various Aspects of Multiple Zeta Functions — in honor of Professor Kohji Matsumoto's 60th birthday, H. Mishou, T. Nakamura, M. Suzuki and Y. Umegaki, eds. (Tokyo: Mathematical Society of Japan, 2020) |
Popis: | We first review our previous works of Arakawa and the authors on two, closely related single-variable zeta functions. Their special values at positive and negative integer arguments are respectively multiple zeta values and poly-Bernoulli numbers. We then introduce, as a generalization of Sasaki's work, level 2 analogue of one of the two zeta functions and prove results analogous to those by Arakawa and the first named author. 19 pages |
Databáze: | OpenAIRE |
Externí odkaz: |