Anthocyanin-Rich Blackcurrant Extract Preserves Gastrointestinal Barrier Permeability and Reduces Enterocyte Damage but Has No Effect on Microbial Translocation and Inflammation After Exertional Heat Stress

Autor: Lee, B. J., Flood, Tessa R., Hiles, Ania, Walker, Ella F., Wheeler, Lucy, Ashdown, Kimberley, Willems, Mark E. T., Costello, Rianne, Greisler, Luke, Romano, Phebe, Hill, Garrett, Kuennen, M.R.
Rok vydání: 2022
Předmět:
Zdroj: International Journal of Sport Nutrition and Exercise Metabolism. 32:265-274
ISSN: 1543-2742
1526-484X
Popis: This study investigated the effects of 7 days of 600 mg/day anthocyanin-rich blackcurrant extract intake on small intestinal permeability, enterocyte damage, microbial translocation, and inflammation following exertional heat stress. Twelve recreationally active men (maximal aerobic capacity = 55.6 ± 6.0 ml·kg−1·min−1) ran (70% VO2max) for 60 min in an environmental chamber (34 °C, 40% relative humidity) on two occasions (placebo/blackcurrant, randomized double-blind crossover). Permeability was assessed from a 4-hr urinary excretion of lactulose and rhamnose and expressed as a ratio of lactulose/rhamnose. Venous blood samples were taken at rest and 20, 60, and 240 min after exercise to measure enterocyte damage (intestinal fatty acid-binding protein); microbial translocation (soluble CD14, lipopolysaccharide-binding protein); and interleukins 6, interleukins 10, and interleukins 1 receptor antagonist. Exercise increased rectal temperature (by ∼2.8 °C) and heart rate (by ∼123 beats/min) in each condition. Blackcurrant supplementation led to a ∼12% reduction in lactulose/rhamnose ratio (p p
Databáze: OpenAIRE