Source Risks As Constraints to Future Metal Supply
Autor: | Éléonore Lèbre, Martin Stringer, Glen Corder, Deanna Kemp, Rick Valenta, John R. Owen |
---|---|
Rok vydání: | 2019 |
Předmět: |
Resource (biology)
Corporate governance Consumer demand Iron General Chemistry Source level 010501 environmental sciences Environmental economics 01 natural sciences Mine site Mining Work (electrical) Metals Environmental monitoring Environmental Chemistry Production (economics) Business Copper 0105 earth and related environmental sciences Environmental Monitoring Forecasting |
Zdroj: | Environmental sciencetechnology. 53(18) |
ISSN: | 1520-5851 |
Popis: | Rising consumer demand is driving concerns around the "availability" and "criticality" of metals. Methodologies have emerged to assess the risks related to global metal supply. None have specifically examined the initial supply source: the mine site where primary ore is extracted. Environmental, social, and governance ("ESG") risks are critical to the development of new mining projects and the conversion of resources to mine production. In this paper, we offer a methodology that assesses the inherent complexities surrounding extractives projects. It includes eight ESG risk categories that overlay the locations of undeveloped iron, copper, and aluminum orebodies that will be critical to future supply. The percentage of global reserves and resources that are located in complex ESG contexts (i.e., with four or more concurrent medium-to-high risks) is 47% for iron, 63% for copper, and 88% for aluminum. This work contributes to research by providing a more complete understanding of source level constraints and risks to supply. |
Databáze: | OpenAIRE |
Externí odkaz: |