Modular forms of arbitrary even weight with no exceptional primes
Autor: | Jeffrey Hatley |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Pure mathematics
Algebra and Number Theory Mathematics - Number Theory business.industry Mathematics::Number Theory 010102 general mathematics Modular form Galois group 010103 numerical & computational mathematics Modular design Galois module Residual 01 natural sciences Image (mathematics) Algebra Embedding problem FOS: Mathematics Number Theory (math.NT) 0101 mathematics business Mathematics |
Popis: | A result of Dieulefait-Wiese proves the existence of modular eigenforms of weight 2 for which the image of every associated residual Galois representation is as large as possible. We generalize this result to eigenforms of general even weight k $\geq$ 2. revision: fixed some typos and mathematical errors; added DOI |
Databáze: | OpenAIRE |
Externí odkaz: |