NONCOMMUTATIVE SPACE CORRECTIONS ON THE KLEIN–GORDON AND DIRAC OSCILLATORS SPECTRA
Autor: | Roberto V. Maluf |
---|---|
Rok vydání: | 2011 |
Předmět: |
High Energy Physics - Theory
Physics Nuclear and High Energy Physics Zeeman effect Dirac (software) FOS: Physical sciences Astronomy and Astrophysics Space (mathematics) Noncommutative geometry Atomic and Molecular Physics and Optics symbols.namesake High Energy Physics - Theory (hep-th) symbols Perturbation theory (quantum mechanics) Degeneracy (mathematics) Klein–Gordon equation Commutative property Mathematical physics |
Zdroj: | International Journal of Modern Physics A. 26:4991-5003 |
ISSN: | 1793-656X 0217-751X |
DOI: | 10.1142/s0217751x11054887 |
Popis: | We consider the influence of a noncommutative space on the Klein-Gordon and the Dirac oscillators. The nonrelativistic limit is taken and the $\theta$-modified Hamiltonians are determined. The corrections of these Hamiltonians on the energy levels are evaluated in first-order perturbation theory. It is observed a total lifting of the degeneracy to the considered levels. Such effects are similar to the Zeeman splitting in a commutative space. Comment: 15 pages, 2 figures, improvements and changes are added, Final version published in IJMPA |
Databáze: | OpenAIRE |
Externí odkaz: |