Minimal winning coalitions and orders of criticality

Autor: Stefano Moretti, Marco Dall'Aglio, Michele Aleandri, Vito Fragnelli
Přispěvatelé: Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Annals of Operations Research
Annals of Operations Research, Springer Verlag, 2021, ⟨10.1007/s10479-021-04199-6⟩
ISSN: 0254-5330
1572-9338
DOI: 10.1007/s10479-021-04199-6⟩
Popis: In this paper, we analyze the order of criticality in simple games, under the light of minimal winning coalitions. The order of criticality of a player in a simple game is based on the minimal number of other players that have to leave so that the player in question becomes pivotal. We show that this definition can be formulated referring to the cardinality of the minimal blocking coalitions or minimal hitting sets for the family of minimal winning coalitions; moreover, the blocking coalitions are related to the winning coalitions of the dual game. Finally, we propose to rank all the players lexicographically accounting the number of coalitions for which they are critical of each order, and we characterize this ranking using four independent axioms.
Databáze: OpenAIRE