Rocklines as Cradles for Refractory Solids in the Protosolar Nebula

Autor: Thomas Ronnet, Bertrand Devouard, Artyom Aguichine, Olivier Mousis
Přispěvatelé: Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Lund University [Lund]
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: The Astrophysical Journal
The Astrophysical Journal, 2020, 901 (2), pp.97. ⟨10.3847/1538-4357/abaf47⟩
The Astrophysical Journal, American Astronomical Society, 2020, 901 (2), pp.97. ⟨10.3847/1538-4357/abaf47⟩
ISSN: 0004-637X
1538-4357
Popis: In our solar system, terrestrial planets and meteoritical matter exhibit various bulk compositions. To understand this variety of compositions, formation mechanisms of meteorites are usually investigated via a thermodynamic approach that neglect the processes of transport throughout the protosolar nebula. Here, we investigate the role played by rocklines (condensation/sublimation lines of refractory materials) in the innermost regions of the protosolar nebula to compute the composition of particles migrating inward the disk as a function of time. To do so, we utilize a one-dimensional accretion disk model with a prescription for dust and vapor transport, sublimation and recondensation of refractory materials (ferrosilite, enstatite, fayalite, forsterite, iron sulfide, metal iron and nickel). We find that the diversity of the bulk composition of cosmic spherules, chondrules and chondrites can be explained by their formation close to rocklines, suggesting that solid matter is concentrated in the vicinity of these sublimation/condensation fronts. Although our model relies a lot on the number of considered species and the availability of thermodynamic data governing state changes, it suggests that rocklines played a major role in the formation of small and large bodies in the innermost regions of the protosolar nebula. Our model gives insights on the mechanisms that might have contributed to the formation of Mercury's large core.
Comment: 12 pages, 8 figures
Databáze: OpenAIRE