Automatic Positional Accuracy Assessment of Imagery Segmentation Processes: A Case Study
Autor: | José Luis Mesa-Mingorance, Francisco J. Quesada Real, Juan José Ruiz-Lendínez, Manuel Antonio Ureña-Cámara |
---|---|
Přispěvatelé: | Ingeniería en Automática, Electrónica, Arquitectura y Redes de Computadores |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Geography (General)
textural imagery segmentation business.industry Process (engineering) Computer science discrepancy methods Geography Planning and Development Perspective (graphical) Pattern recognition Automation positional accuracy assessment Field (computer science) discrepancymethods Categorization Component (UML) Earth and Planetary Sciences (miscellaneous) G1-922 Segmentation Artificial intelligence Computers in Earth Sciences business Aerial image automation |
Zdroj: | ISPRS Int. J. Geo-Inf. 2021, 10(7), 430 ISPRS International Journal of Geo-Information, Vol 10, Iss 430, p 430 (2021) ISPRS International Journal of Geo-Information Volume 10 Issue 7 RODIN. Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz instname |
Popis: | There are many studies related to Imagery Segmentation (IS) in the field of Geographic Information (GI). However, none of them address the assessment of IS results from a positional perspective. In a field in which the positional aspect is critical, it seems reasonable to think that the quality associated with this aspect must be controlled. This paper presents an automatic positional accuracy assessment (PAA) method for assessing this quality component of the regions obtained by means of the application of a textural segmentation algorithm to a Very High Resolution (VHR) aerial image. This method is based on the comparison between the ideal segmentation and the computed segmentation by counting their differences. Therefore, it has the same conceptual principles as the automatic procedures used in the evaluation of the GI’s positional accuracy. As in any PAA method, there are two key aspects related to the sample that were addressed: (i) its size—specifically, its influence on the uncertainty of the estimated accuracy values—and (ii) its categorization. Although the results obtained must be taken with caution, they made it clear that automatic PAA procedures, which are mainly applied to carry out the positional quality assessment of cartography, are valid for assessing the positional accuracy reached using other types of processes. Such is the case of the IS process presented in this study. |
Databáze: | OpenAIRE |
Externí odkaz: |