Local fading accelerator and the origin of TeV cosmic ray electrons

Autor: Jacco Vink, Stefano Gabici, S. Recchia, Felix Aharonian
Přispěvatelé: AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
electron: energy
lepton: energy
Inverse
Astrophysics
Electron
GeV
01 natural sciences
cosmic radiation: TeV
Luminosity
Positron
Diffusion (business)
attenuation
pulsar
Physics
High Energy Astrophysical Phenomena (astro-ph.HE)
education.field_of_study
energy: high
cosmic radiation: spectrum
Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)
shock waves
electron: spectrum
Supernova
positron
Production (computer science)
Astrophysics - High Energy Astrophysical Phenomena
Particle physics
accelerator
Astrophysics::High Energy Astrophysical Phenomena
energy loss
Population
FOS: Physical sciences
Cosmic ray
cosmic radiation: diffusion
energy dependence
Pulsar
0103 physical sciences
supernova
synchrotron
positron: acceleration
Fading
010306 general physics
education
010308 nuclear & particles physics
particle: energy
electron: cosmic radiation
acceleration
[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]
injection
Compton scattering: inverse
13. Climate action
Physics::Accelerator Physics
High Energy Physics::Experiment
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Energy (signal processing)
Astrophysics and astroparticle physics
Zdroj: Phys.Rev.D
Phys.Rev.D, 2019, 99 (10), pp.103022. ⟨10.1103/PhysRevD.99.103022⟩
Physical Review D
Physical Review D, American Physical Society, 2019, 99 (10), pp.103022. ⟨10.1103/PhysRevD.99.103022⟩
PoS
37th International Cosmic Ray Conference
37th International Cosmic Ray Conference, Jul 2021, Berlin, Germany. pp.168, ⟨10.22323/1.395.0168⟩
ISSN: 1550-7998
1550-2368
Popis: The cosmic ray electron spectrum exhibits a break at a particle energy of $\ensuremath{\sim}1\text{ }\text{ }\mathrm{TeV}$ and extends without any attenuation up to $\ensuremath{\sim}20\text{ }\text{ }\mathrm{TeV}$. Synchrotron and inverse Compton energy losses strongly constrain the time of emission of $\ensuremath{\sim}20\text{ }\text{ }\mathrm{TeV}$ electrons to $\ensuremath{\approx}2\ifmmode\times\else\texttimes\fi{}{10}^{4}\text{ }\text{ }\mathrm{yr}$ and the distance of the potential source(s) to $\ensuremath{\approx}100--500\text{ }\text{ }\mathrm{pc}$, depending on the cosmic ray diffusion coefficient. This suggests that maybe one nearby discrete source may explain the observed spectrum of high energy electrons. Given the strong energy dependence ($\ensuremath{\propto}1/E$) of the cooling time of TeV electrons, the spectral shape of the electron spectrum above the $\ensuremath{\sim}1\text{ }\text{ }\mathrm{TeV}$ break strongly depends on the history of injection of these electrons from the source. In this paper we show that a local, continuous (on timescales of $\ensuremath{\sim}{10}^{5}\text{ }\text{ }\mathrm{yr}$) but fading electron accelerator, with a characteristic decay time of $\ensuremath{\sim}{10}^{4}\text{ }\text{ }\mathrm{yr}$, can naturally account for the entire spectrum of cosmic ray electrons in the TeV domain. Although the standard ``nearby pulsar'' scenario naturally meets this time condition, it is (almost) excluded by recent measurements of the positron fraction, which above $\ensuremath{\sim}100\text{ }\text{ }\mathrm{GeV}$ saturates at a level well below 0.5 and drops above $\ensuremath{\sim}400--500\text{ }\text{ }\mathrm{GeV}$. The second potential source population, the supernova remnants, accelerate mostly electrons, rather than positrons. However, they hardly can provide an effective production of multi-TeV electrons via the standard diffusive shock acceleration scenario for $\ensuremath{\sim}{10}^{5}\text{ }\text{ }\mathrm{yr}$. A third possibility are stellar wind shocks, which however are likely to be continuous with nearly constant luminosity on timescales $\ensuremath{\gg}10\text{ }\text{ }\mathrm{kyr}$ and probably cannot match the time requirement of our potential source. Therefore, we face a real challenge in the identification of the origin of the source of multi-TeV electrons. Thus, the link of this source with known particle accelerators would require a dramatic revision of the standard paradigms of acceleration and escape in such objects.
Databáze: OpenAIRE