Borel Isomorphism of SPR Markov Shifts
Autor: | Jérôme Buzzi, Ricardo Gómez, Mike Boyle |
---|---|
Přispěvatelé: | Department of Mathematics, University of Maryland [College Park], University of Maryland System-University of Maryland System, Laboratoire de Mathématiques d'Orsay (LM-Orsay), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Instituto de Matematicas [México], Universidad Nacional Autónoma de México (UNAM) |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Pure mathematics
Markov chain General Mathematics shift of finite type [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] Borel isomorphism Dynamical Systems (math.DS) 37B10 37B40 Conjugacy class FOS: Mathematics Entropy (information theory) topological Markov chain almost isomorphism Mathematics - Dynamical Systems entropy countable state Markov shift Mathematics |
Popis: | exico) Abstract. We show that strongly positively recurrent Markov shifts (including shifts of nite type) are classied up to Borel conjugacy by their entropy, period and their numbers of periodic points. |
Databáze: | OpenAIRE |
Externí odkaz: |