Dismantling nuclear waste rich in P2O5, MoO3 and ZrO2: How do these oxides incorporate in aluminoborosilicate glasses?

Autor: Daniel Caurant, Elise Régnier, Odile Majérus, Sophie Achigar
Přispěvatelé: Institut de Recherche de Chimie Paris (IRCP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Ministère de la Culture (MC), Commissariat à l'Energie Atomique, Centre de Marcoule (CEA), Département de recherche sur les Procédés et Matériaux pour les Environnements complexes (DPME), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL), Andra via un Programme investissement d'avenir (PIA), DEM&MELT project, Département de recherche sur les technologies pour l'enrichissement, le démantèlement et les déchets (DE2D), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Journal of Nuclear Materials
Journal of Nuclear Materials, Elsevier, 2021, 544, pp.152731. ⟨10.1016/j.jnucmat.2020.152731⟩
Journal of Nuclear Materials, 2020, pp.10.1016/j.jnucmat.2020.152731. ⟨10.1016/j.jnucmat.2020.152731⟩
Journal of Nuclear Materials, Elsevier, 2020, pp.10.1016/j.jnucmat.2020.152731. ⟨10.1016/j.jnucmat.2020.152731⟩
Journal of Nuclear Materials, 2021, 544, pp.152731. ⟨10.1016/j.jnucmat.2020.152731⟩
ISSN: 0022-3115
DOI: 10.1016/j.jnucmat.2020.152731⟩
Popis: International audience; Dismantling nuclear facilities leads to radioactive waste less active but which may have highly variable compositions compared to the high-level radioactive wastes recovered after the reprocessing of spent nuclear fuel. In this work, we studied the ability of an alkali-rich glass matrix belonging to the SiO2-B2O3-Al2O3-Fe2O3-Na2O-Li2O-CaO system to solubilize P2O5, MoO3, ZrO2 and Cs2O by melting at 1100°C. Phosphorus, molybdenum, zirconium and cesium are present as a mixture of complex compounds in the real radioactive dismantling waste containing 137Cs considered here. To determine the capacity of the matrix to accept a wide range of variations of waste composition and the solubility limits of P2O5, MoO3, and ZrO2, several glass series were prepared by melting mixtures of raw materials (oxides, carbonates, phosphates) and by increasing the total amount of oxides representing the waste and varying their relative proportions. Their incorporation in the melt was studied by analyzing the microstructure of quenched glasses by XRD and SEM-EDS. In addition, the phase separation and crystallization tendencies during cooling were studied by analyzing the microstructure of glasses cooled at 1°C.min-1 from 1100°C (representative of cooling in industrials steel canisters). It is shown that the glass can accept a wide range of waste compositions without exhibiting heterogeneities. For all compositions the melt remained homogeneous (study of quenched samples). However, during slow cooling, P2O5 and MoO3 may lead to phase separation and crystallization of Na2MoO4, CsLiMoO4, NaCaPO4, NaLi2PO4, and Li3PO4. Cs can be partially incorporated into the molybdenum-rich phase CsLiMoO4 when MoO3 content is higher than 1.3wt%. ZrO2 never lead to phase separation or crystallization, possibly because of the existence of strong connections between Zr and Si through Zr-O-Si bonds whereas P and Mo would be present as PO43− and MoO42− mobile entities. The increasing order of oxides solubility in the glass is the following: MoO3
Databáze: OpenAIRE