Algorithms for Outerplanar Graph Roots and Graph Roots of Pathwidth at Most 2

Autor: Daniël Paulusma, Pinar Heggernes, Paloma T. Lima, Dieter Kratsch, Petr A. Golovach
Přispěvatelé: Laboratoire de Génie Informatique, de Production et de Maintenance (LGIPM), Université de Lorraine (UL)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Algorithmica
Algorithmica, Springer Verlag, 2019, 81 (7), pp.2795-2828. ⟨10.1007/s00453-019-00555-y⟩
Algorithmica, 2019, Vol.81(7), pp.2795-2828 [Peer Reviewed Journal]
ISSN: 0178-4617
1432-0541
DOI: 10.1007/s00453-019-00555-y⟩
Popis: Deciding if a graph has a square root is a classical problem, which has been studied extensively both from graph-theoretic and algorithmic perspective. As the problem is NP-complete, substantial effort has been dedicated to determining the complexity of deciding if a graph has a square root belonging to some specific graph class $${{\mathcal {H}}}$$ . There are both polynomial-time solvable and NP-complete results in this direction, depending on $${{\mathcal {H}}}$$ . We present a general framework for the problem if $$\mathcal{H}$$ is a class of sparse graphs. This enables us to generalize a number of known results and to give polynomial-time algorithms for the cases where $${{\mathcal {H}}}$$ is the class of outerplanar graphs and $${{\mathcal {H}}}$$ is the class of graphs of pathwidth at most 2.
Databáze: OpenAIRE