Cryptanalysis of RSA Variants with Primes Sharing Most Significant Bits
Autor: | Abderrahmane Nitaj, Meryem Cherkaoui-Semmouni, Willy Susilo, Joseph Tonien |
---|---|
Přispěvatelé: | Nitaj, Abderrahmane, Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Discrete mathematics
Public exponent Computer science Continued fractions 010102 general mathematics Prime number 020206 networking & telecommunications Coppersmith's method 02 engineering and technology 01 natural sciences Prime (order theory) law.invention RSA variants [INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] law Lattice reduction 0202 electrical engineering electronic engineering information engineering Exponent Cryptosystem 0101 mathematics Cryptanalysis [INFO.INFO-CR] Computer Science [cs]/Cryptography and Security [cs.CR] |
Zdroj: | Information Security Conference (ISC 2021) Information Security Conference (ISC 2021), Nov 2021, Bali, Indonesia Lecture Notes in Computer Science ISBN: 9783030913557 |
Popis: | International audience; We consider four variants of the RSA cryptosystem with an RSA modulus N = pq where the public exponent e and the private exponent d satisfy an equation of the form ed − k (p^2 − 1)( q^2 − 1 )= 1. We show that, if the prime numbers p and q share most significant bits, that is, if the prime difference |p − q| is sufficiently small, then one can solve the equation for larger values of d, and factor the RSA modulus, which makes the systems insecure. |
Databáze: | OpenAIRE |
Externí odkaz: |