Coexistence of three predators competing for a single biotic resource
Autor: | Tewfik Sari, Claude Lobry, Karim Yadi |
---|---|
Přispěvatelé: | Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA), Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Water Resource Modeling (MERE), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA), Laboratoire Systèmes Dynamiques et Applications (LSDA), Université Aboubekr Belkaid - University of Belkaïd Abou Bekr [Tlemcen], Absent, J. Lévine (Editeur), P. Mullhaupt (Editeur), Laboratoire de Mathématiques Informatique et Applications (LMIA), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA)), Jean Lévine and Philippe Müllhaupt, Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA), Laboratoire de Mathématiques Informatique et Applications [UHA] (LMIA) |
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Singular perturbation
media_common.quotation_subject [SDV]Life Sciences [q-bio] [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] Motion (geometry) Mathematical proof 01 natural sciences Competition (biology) SYSTEME DIFFERENTIEL Non-standard analysis SPECIES COEXISTENCE 03 medical and health sciences Limit cycle Calculus DIFFERENTIAL SYSTEM COEXISTENCE DES ESPECES Statistical physics 0101 mathematics Perturbation theory 030304 developmental biology Mathematics media_common 0303 health sciences 010102 general mathematics Sketch ECOLOGIE |
Zdroj: | Advances in the Theory of Control, Signals and Systems with Physical Modeling Advances in the Theory of Control, Signals and Systems with Physical Modeling, Springer-Verlag, 2010, Lecture Notes in Control and Information Sciences, 978-3-642-16134-6 Advances in the Theory of Control, Signals and Systems with Physical Modeling-Part III Jean Lévine and Philippe Müllhaupt. Advances in the Theory of Control, Signals and Systems with Physical Modeling-Part III, Springer, pp.309-321, 2011, Lecture Notes in Control and Information Sciences-407, 978-3-642-16134-6. ⟨10.1007/978-3-642-16135-3_25⟩ Advances in the Theory of Control, Signals and Systems with Physical Modeling ISBN: 9783642161346 |
DOI: | 10.1007/978-3-642-16135-3_25⟩ |
Popis: | International audience; We construct a model of competition of three consumers for one single biotic resource ; simulations show that the three species coexist. Using singular perturbations theory we sketch a mathematical proof for this coexistence. The main mathematical tool used is an extension of the Pontryagin-Rodygin theorem on the ''slow'' motion of a ''slow-fast'' differential system when the ''fast'' motion possesses a stable limit cycle. The mathematical analysis is done within the framework of Non Standard Analysis. |
Databáze: | OpenAIRE |
Externí odkaz: |