Coherent frequency conversion in a superconducting artificial atom with two internal degrees of freedom

Autor: Iulian Matei, Olivier Buisson, Etienne Dumur, Wiebke Guichard, A. K. Feofanov, Florent Lecocq, Cécile Naud, I. M. Pop
Přispěvatelé: Circuits électroniques quantiques Alpes (QuantECA), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Nanoscience Fondation, IUF, ANR et CEE, European Project: 248629,EC:FP7:ICT,FP7-ICT-2009-4,SOLID(2010), Circuits électroniques quantiques Alpes (NEEL - QuantECA), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Physical Review Letters
Physical Review Letters, American Physical Society, 2012, 108 (10), pp.107001. ⟨10.1103/PhysRevLett.108.107001⟩
Physical Review Letters, 2012, 108 (10), pp.107001. ⟨10.1103/PhysRevLett.108.107001⟩
ISSN: 0031-9007
1079-7114
DOI: 10.1103/PhysRevLett.108.107001⟩
Popis: By adding a large inductance in a dc-SQUID phase qubit loop, one decouples the junctions' dynamics and creates a superconducting artificial atom with two internal degrees of freedom. In addition to the usual symmetric plasma mode ({\it s}-mode) which gives rise to the phase qubit, an anti-symmetric mode ({\it a}-mode) appears. These two modes can be described by two anharmonic oscillators with eigenstates $\ket{n_{s}}$ and $\ket{n_{a}}$ for the {\it s} and {\it a}-mode, respectively. We show that a strong nonlinear coupling between the modes leads to a large energy splitting between states $\ket{0_{s},1_{a}}$ and $\ket{2_{s},0_{a}}$. Finally, coherent frequency conversion is observed via free oscillations between the states $\ket{0_{s},1_{a}}$ and $\ket{2_{s},0_{a}}$.
Databáze: OpenAIRE