Hydrodynamic cavitation-assisted continuous pre-treatment of sugarcane bagasse for ethanol production: Effects of geometric parameters of the cavitation device

Autor: Rafaela Medeiros Dionízio, Ruly Terán Hilares, Silvio Silvério da Silva, Salvador Sanchez Muñoz, Ruy de Sousa Júnior, C.A. Prado, Júlio César dos Santos
Rok vydání: 2020
Předmět:
Zdroj: Ultrasonics Sonochemistry. 63:104931
ISSN: 1350-4177
Popis: For biotechnological conversion of lignocellulosic biomass, a pre-treatment step is required before enzymatic hydrolysis of carbohydrate fractions of the material, which is required to produce fermentable sugars for generation of ethanol or other products in a biorefinery. The most of the reported pre-treatment technologies are in batch operation mode, presenting some disadvantages as dead times in the process. In this context, hydrodynamic cavitation (HC)-assisted alkaline hydrogen peroxide (AHP) pre-treatment in continuous process was proposed for pre-treatment of sugarcane bagasse (SCB). The system was designed with a main reactor containing two devices to generate cavitation by passing liquid medium through orifice plates. For SCB pretreated in continuous process, 52.79, 34.31, 22.13 and 15.81 g of total reducing sugars (TRS) per 100 g of SCB were released in samples pretreated using orifice plates with a number of holes of 24 (d = 0.45 mm), 16 (d = 0.65 mm), 12 (d = 0.8 mm) and 8 (d = 1 mm), respectively. Computational Fluid Dynamics (CFD) tools showed that 0.94 of vapor phase volume fraction and 0.19 of cavitation number were achieved at 31 m/s of throat velocity and upstream pressure of 350,000 Pa. By using pretreated SCB, 28.44 g of ethanol/L (84.31% of yield respect to theoretical value) was produced by immobilized Scheffersomyces stipitis NRRL-Y7124 in a simultaneous hydrolysis and fermentation process at high solid loading (16% S/L). Thus, HC-assisted process was proved as a promising technology for valorization of lignocellulosic biomass.
Databáze: OpenAIRE