Laser Ablation-Assisted Synthesis of Plasmonic Si@Au Core-Satellite Nanocomposites for Biomedical Applications
Autor: | Gleb Tselikov, Khaled Metwally, Anton A. Popov, Ahmed Al-Kattan, Andrei V. Kabashin, Serge Mensah |
---|---|
Přispěvatelé: | Aix Marseille Université (AMU), Laboratoire Lasers, Plasmas et Procédés photoniques (LP3), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
biomedical applications
Materials science Si@Au core-satellite General Chemical Engineering Nanoparticle Nanotechnology 02 engineering and technology 010402 general chemistry 01 natural sciences pulsed laser ablation in liquids Article Nanomaterials lcsh:Chemistry Mie theory [CHIM]Chemical Sciences General Materials Science Absorption (electromagnetic radiation) Plasmon [PHYS]Physics [physics] Plasmonic nanoparticles Laser ablation Photothermal therapy 021001 nanoscience & nanotechnology 0104 chemical sciences plasmonic nanoparticles core-shell lcsh:QD1-999 Nanorod 0210 nano-technology |
Zdroj: | Nanomaterials Nanomaterials, MDPI, 2021, 11 (3), pp.592. ⟨10.3390/nano11030592⟩ Volume 11 Issue 3 Nanomaterials, 2021, 11 (3), pp.592. ⟨10.3390/nano11030592⟩ Nanomaterials, Vol 11, Iss 592, p 592 (2021) |
ISSN: | 2079-4991 |
DOI: | 10.3390/nano11030592⟩ |
Popis: | International audience; Owing to strong plasmonic absorption and excellent biocompatibility, gold nanostructures are among best candidates for photoacoustic bioimaging and photothermal therapy, but such applications require ultrapure Au-based nanoformulations of complex geometry (core-shells, nanorods) in order to shift the absorption band toward the region of relative tissue transparency (650–1000 nm). Here, we present a methodology for the fabrication of Si@Au core-satellite nanostructures, comprising of a Si core covered with small Au nanoparticles (NP), based on laser ablative synthesis of Si and Au NPs in water/ethanol solutions, followed by a chemical modification of the Si NPs by 3-aminopropyltrimethoxysilane (APTMS) and their subsequent decoration by the Au NPs. We show that the formed core-satellites have a red-shifted plasmonic absorption feature compared to that of pure Au NPs (520 nm), with the position of the peak depending on APTMS amount, water−ethanol solvent percentage and Si−Au volume ratio. As an example, even relatively small 40-nm core-satellites (34 nm Si core + 4 nm Au shell) provided a much red shifted peak centered around 610 nm and having a large tail over 700 nm. The generation of the plasmonic peak is confirmed by modeling of Si@Au core-shells of relevant parameters via Mie theory. Being relatively small and exempt of any toxic impurity due to ultraclean laser synthesis, the Si@Au core-satellites promise a major advancement of imaging and phototherapy modalities based on plasmonic properties of nanomaterials. |
Databáze: | OpenAIRE |
Externí odkaz: |