Determinant of Friederichs Dirichlet Laplacians on $2$-dimensional hyperbolic cones

Autor: Victor Kalvin
Rok vydání: 2020
Předmět:
DOI: 10.48550/arxiv.2011.05407
Popis: We explicitly express the spectral determinant of Friederichs Dirichlet Laplacians on the 2-dimensional hyperbolic (Gaussian curvature -1) cones in terms of the cone angle and the geodesic radius of the boundary. The related results in the recent paper "Riemann-Roch isometries in the non-compact orbifold setting," J. Eur. Math. Soc. 22 (2020) by G. Freixas i Montplet and A. von Pippich turn out to be incorrect.
Databáze: OpenAIRE