Determinant of Friederichs Dirichlet Laplacians on $2$-dimensional hyperbolic cones
Autor: | Victor Kalvin |
---|---|
Rok vydání: | 2020 |
Předmět: |
Mathematics - Differential Geometry
Mathematics - Number Theory Applied Mathematics General Mathematics FOS: Physical sciences Mathematical Physics (math-ph) Mathematics::Spectral Theory Functional Analysis (math.FA) Mathematics - Spectral Theory Mathematics - Functional Analysis Differential Geometry (math.DG) FOS: Mathematics 58J52 11M36 Number Theory (math.NT) Spectral Theory (math.SP) Mathematical Physics |
DOI: | 10.48550/arxiv.2011.05407 |
Popis: | We explicitly express the spectral determinant of Friederichs Dirichlet Laplacians on the 2-dimensional hyperbolic (Gaussian curvature -1) cones in terms of the cone angle and the geodesic radius of the boundary. The related results in the recent paper "Riemann-Roch isometries in the non-compact orbifold setting," J. Eur. Math. Soc. 22 (2020) by G. Freixas i Montplet and A. von Pippich turn out to be incorrect. |
Databáze: | OpenAIRE |
Externí odkaz: |