Inverse problems for elliptic equations with power type nonlinearities

Autor: Yi-Hsuan Lin, Tony Liimatainen, Matti Lassas, Mikko Salo
Přispěvatelé: Department of Mathematics and Statistics, Inverse Problems, Matti Lassas / Principal Investigator
Rok vydání: 2021
Předmět:
Zdroj: Journal de Mathématiques Pures et Appliquées
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2020.11.006
Popis: We introduce a method for solving Calder\'on type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. Assuming the knowledge of a nonlinear Dirichlet-to-Neumann map, we determine both a potential and a conformal manifold simultaneously in dimension $2$, and a potential on transversally anisotropic manifolds in dimensions $n \geq 3$. In the Euclidean case, we show that one can solve the Calder\'on problem for certain semilinear equations in a surprisingly simple way without using complex geometrical optics solutions.
Comment: 25 pages
Databáze: OpenAIRE