State estimation for a class of non-linear systems
Autor: | Benoît Schwaller, Birgitta Dresp-Langley, José Ragot, Denis Ensminger |
---|---|
Přispěvatelé: | Laboratoire de Génie de la Conception (LGeco), Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Conception en structures (CS), Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche en Automatique de Nancy (CRAN), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Lyapunov stability
observer theory 0209 industrial biotechnology State variable non-linear systems convergence Observer (quantum physics) Applied Mathematics [SCCO.COMP]Cognitive science/Computer science 02 engineering and technology Lipschitz continuity Nonlinear system [SPI]Engineering Sciences [physics] 020901 industrial engineering & automation Control theory Attractor Convergence (routing) 0202 electrical engineering electronic engineering information engineering Computer Science (miscellaneous) 020201 artificial intelligence & image processing State observer lyapunov stability Engineering (miscellaneous) Mathematics |
Zdroj: | International Journal of Applied Mathematics and Computer Science International Journal of Applied Mathematics and Computer Science, University of Zielona Góra 2013, 23 (2), pp.383-394. ⟨10.2478/amcs-2013-0029⟩ |
ISSN: | 1641-876X 2083-8492 |
DOI: | 10.2478/amcs-2013-0029⟩ |
Popis: | International audience; We propose a new type of Proportional Integral (PI) state observer for a class of nonlinear systems in continuous time which ensures an asymptotic stable convergence of the state estimates. Approximations of non-linearity are not necessary to obtain such results, but the functions must be, at least locally, of the Lipschitz type. The obtained state variables are exact and robust against noise. Naslin's damping criterion permits synthesizing gains in an algebraically simple and efficient way. Both the speed and damping of the observer response are controlled in this way. Model simulations based on a Sprott strange attractor are discussed as an example. |
Databáze: | OpenAIRE |
Externí odkaz: |