A new efficient short-step projective interior point method for linear programming

Autor: Mousaab Bouafia, Adnan Yassine, Djamel Benterki
Přispěvatelé: Laboratoire de Mathématiques Appliquées du Havre (LMAH), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU), Institut d'Informatique et de Mathématiques Appliquées de Grenoble (IMAG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Operations Research Letters
Operations Research Letters, 2018, 46 (3), pp.291--294. ⟨10.1016/j.orl.2018.02.004⟩
DOI: 10.1016/j.orl.2018.02.004⟩
Popis: In this paper, we are interested in the performance of Karmarkar’s projective algorithm for linear programming. We propose a new displacement step to accelerate and improve the convergence of this algorithm. This purpose is confirmed by numerical experimentations showing the efficiency and the robustness of the obtained algorithm over Schrijver’s one for small problem dimensions.
Databáze: OpenAIRE