Finite powers and products of Menger sets
Autor: | Piotr Szewczak, Boaz Tsaban, Lyubomyr Zdomskyy |
---|---|
Rok vydání: | 2021 |
Předmět: |
Discrete mathematics
Algebra and Number Theory Ultrafilter General Topology (math.GN) Mathematics::General Topology Mathematics - Logic 54D20 03E17 Set (abstract data type) Mathematics::Logic Argument Product (mathematics) FOS: Mathematics Mathematics::Metric Geometry Logic (math.LO) Construct (philosophy) Mathematics - General Topology Mathematics |
Zdroj: | Fundamenta Mathematicae. 253:257-275 |
ISSN: | 1730-6329 0016-2736 |
DOI: | 10.4064/fm896-4-2020 |
Popis: | We construct, using mild combinatorial hypotheses, a real Menger set that is not Scheepers, and two real sets that are Menger in all finite powers, with a non-Menger product. By a forcing-theoretic argument, we show that the same holds in the Blass--Shelah model for arbitrary values of the ultrafilter and dominating number. 14 pages |
Databáze: | OpenAIRE |
Externí odkaz: |