Finite powers and products of Menger sets

Autor: Piotr Szewczak, Boaz Tsaban, Lyubomyr Zdomskyy
Rok vydání: 2021
Předmět:
Zdroj: Fundamenta Mathematicae. 253:257-275
ISSN: 1730-6329
0016-2736
DOI: 10.4064/fm896-4-2020
Popis: We construct, using mild combinatorial hypotheses, a real Menger set that is not Scheepers, and two real sets that are Menger in all finite powers, with a non-Menger product. By a forcing-theoretic argument, we show that the same holds in the Blass--Shelah model for arbitrary values of the ultrafilter and dominating number.
14 pages
Databáze: OpenAIRE