Variational Uncalibrated Photometric Stereo under General Lighting

Autor: Maolin Gao, Tao Wu, Daniel Cremers, Bjoern Haefner, Yvain Quéau, Zhenzhang Ye
Přispěvatelé: Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Artisense, Equipe Image - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: The IEEE International Conference on Computer Vision (ICCV 2019)
The IEEE International Conference on Computer Vision (ICCV 2019), Oct 2019, Seoul, South Korea. pp.8539-8548, ⟨10.1109/ICCV.2019.00863⟩
ICCV
Popis: Photometric stereo (PS) techniques nowadays remain constrained to an ideal laboratory setup where modeling and calibration of lighting is amenable. To eliminate such restrictions, we propose an efficient principled variational approach to uncalibrated PS under general illumination. To this end, the Lambertian reflectance model is approximated through a spherical harmonic expansion, which preserves the spatial invariance of the lighting. The joint recovery of shape, reflectance and illumination is then formulated as a single variational problem. There the shape estimation is carried out directly in terms of the underlying perspective depth map, thus implicitly ensuring integrability and bypassing the need for a subsequent normal integration. To tackle the resulting nonconvex problem numerically, we undertake a two-phase procedure to initialize a balloon-like perspective depth map, followed by a "lagged" block coordinate descent scheme. The experiments validate efficiency and robustness of this approach. Across a variety of evaluations, we are able to reduce the mean angular error consistently by a factor of 2-3 compared to the state-of-the-art.
Haefner and Ye contributed equally
Databáze: OpenAIRE