Inhibition of interferon I induction by non-structural protein NSs of Puumala virus and other vole-associated orthohantaviruses: phenotypic plasticity of the protein and potential functional domains
Autor: | Giulia Gallo, Elias Bendl, Florian Binder, Myriam Ermonval, Christine Luttermann, Rainer G. Ulrich, Isabella Eckerle |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Viral Nonstructural Proteins / genetics
Viral Nonstructural Proteins Virus Replication Puumala virus chemistry.chemical_compound Interferon Germany Chlorocebus aethiops Viral Promoter Regions Genetic chemistry.chemical_classification ddc:616 Puumala virus / pathogenicity biology General Medicine Transfection Adaptation Physiological Amino acid Interferon-beta / metabolism Hemorrhagic Fever with Renal Syndrome Host-Pathogen Interactions Interferon Type I Original Article Interferon-beta / genetics Viral Nonstructural Proteins / chemistry Interferon Type I / genetics medicine.drug Gene Expression Regulation Viral Interferon Type I / metabolism Physiological Viral Nonstructural Proteins / metabolism Promoter Regions Eukaryotic translation Genetic Virology Host-Pathogen Interactions / physiology medicine Animals Humans Puumala virus / physiology Adaptation Puumala virus / isolation & purification Vero Cells Methionine Interferon-beta biology.organism_classification Open reading frame HEK293 Cells chemistry Gene Expression Regulation A549 Cells Mutation Vero cell |
Zdroj: | Archives of Virology, Vol. 166, No 11 (2021) pp. 2999-3012 Archives of Virology |
ISSN: | 0304-8608 |
Popis: | The orthohantavirus Puumala virus (PUUV), which is transmitted by bank voles (Clethrionomys glareolus), and other vole-borne hantaviruses contain in their small (S) genome segment two overlapping open reading frames, coding for the nucleocapsid protein and the non-structural protein NSs, a putative type I interferon (IFN-I) antagonist. To investigate the role of NSs of PUUV and other orthohantaviruses, the expression pattern of recombinant NSs constructs and their ability to inhibit human IFN-I promoter activity were investigated. The NSs proteins of PUUV and related cricetid-borne orthohantaviruses showed strong inhibition of IFN-I promoter induction. We identified protein products originating from three and two methionine initiation codons in the NSs ORF of PUUV during transfection and infection, respectively. The three putative start codons are conserved in all PUUV strains analysed. Translation initiation at these start codons influenced the inhibitory activity of the NSs products, with the wild-type (wt) construct expressing two proteins starting at the first and second methionine and showing strong inhibition activity. Analysis of in vitro-generated variants and naturally occurring PUUV NSs proteins indicated that amino acid variation in the NSs protein is well tolerated, suggesting its phenotypic plasticity. The N-terminal 20-amino-acid region of the NSs protein was found to be associated with strong inhibition and to be highly vulnerable to amino acid exchanges and tag fusions. Infection studies using human, bank vole, and Vero E6 cells did not show obvious differences in the replication capacity of PUUV Sotkamo wt and a strain with a truncated NSs protein (NSs21Stop), showing that the lack of a full-length NSs might be compensated by its N-terminal peptide, as seen in transfection experiments. These results contribute to our understanding of virus-host interactions and highlight the importance of future innate immunity studies in reservoir hosts. Supplementary Information The online version contains supplementary material available at 10.1007/s00705-021-05159-y. |
Databáze: | OpenAIRE |
Externí odkaz: |