Phase Transitions in Ferromagnetic Ising Models with spatially dependent magnetic fields
Autor: | Errico Presutti, Leandro Cioletti, Marzio Cassandro, Rodrigo Bissacot |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Physics
Phase transition Condensed matter physics Probability (math.PR) FOS: Physical sciences Statistical and Nonlinear Physics State (functional analysis) Mathematical Physics (math-ph) Space (mathematics) k-nearest neighbors algorithm Magnetic field Ferromagnetism FOS: Mathematics Ising model MODELO DE ISING Mathematical Physics Mathematics - Probability |
Zdroj: | Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
Popis: | In this paper we study the nearest neighbor Ising model with ferromagnetic interactions in the presence of a space dependent magnetic field which vanishes as $|x|^{-\alpha}$, $\alpha >0$, as $|x|\to \infty$. We prove that in dimensions $d\ge 2$ for all $\beta$ large enough if $\alpha>1$ there is a phase transition while if $\alpha Comment: to appear in Communications in Mathematical Physics |
Databáze: | OpenAIRE |
Externí odkaz: |