TSRuleGrowth: Mining Partially-Ordered Prediction Rules From a Time Series of Discrete Elements, Application to a Context of Ambient Intelligence

Autor: Lionel Delphin-Poulat, Rozenn Nicol, Salima Hassas, Benoit Vuillemin, Laëtitia Matignon
Přispěvatelé: Orange Labs [Lannion], France Télécom, Systèmes Cognitifs et Systèmes Multi-Agents (SyCoSMA), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), France Télécom Recherche et Développement [Lannion] (FTR&D)
Rok vydání: 2019
Předmět:
Zdroj: Advanced Data Mining and Applications ISBN: 9783030352301
ADMA
ADMA: Advanced Data Mining and Applications
ADMA: Advanced Data Mining and Applications, Nov 2019, Dalian, China
DOI: 10.1007/978-3-030-35231-8_9
Popis: This paper presents TSRuleGrowth, an algorithm for mining partially-ordered rules on a time series. TSRuleGrowth takes principles from the state of the art of transactional rule mining, and applies them to time series. It proposes a new definition of the support, which overcomes the limitations of previous definitions. Experiments on two databases of real data coming from connected environments show that this algorithm extracts relevant usual situations and outperforms the state of the art.
Databáze: OpenAIRE