The determination of relationship between 'excision repair cross-complementing group 1' (ERCC1) gene T19007C and C8092A single nucleotide polymorphisms and clinicopathological parameters in non-small cell lung cancer
Autor: | Vildan Caner, Nilay Şen Türk, Gulseren Bagci, G. Ozan Çetin, Nur Büyükpınarbaşılı, Emre Tepeli, Esin Koç |
---|---|
Rok vydání: | 2011 |
Předmět: |
excision repair cross complementing group 1 gene
genetic association DNA Repair genotype Non-small cell lung cancer molecular pathology oncogene single nucleotide polymorphism Carcinoma Non-Small-Cell Lung genetic variability Genotype DNA extraction Excision repair cross-complementing lung carcinogenesis messenger RNA adult lung non small cell cancer article General Medicine DNA-Binding Proteins aged female real time polymerase chain reaction histopathology SNP array DNA repair Single-nucleotide polymorphism gene frequency Biology Real-Time Polymerase Chain Reaction Polymorphism Single Nucleotide male Genetics Humans controlled study Genetic Predisposition to Disease human Molecular Biology Allele frequency DNA Primers Chi-Square Distribution cancer staging prediction Endonucleases heterozygote major clinical study Molecular biology human tissue clinical feature gene function ERCC1 upregulation Real-time PCR Nucleotide excision repair |
Zdroj: | Molecular Biology Reports. 39:375-380 |
ISSN: | 1573-4978 0301-4851 |
DOI: | 10.1007/s11033-011-0748-8 |
Popis: | DNA repair plays a key role in prevention of carcinogenesis and one of the most important DNA repair mechanisms is nucleotide excision repair (NER) pathway. This pathway includes a number of genes such as excision repair cross-complementing group 1 (ERCC1) gene which are responsible for the 5′ incision of damaged DNA. A reduced DNA repair capacity associated with ERCC1 mRNA level has been observed in lung carcinogenesis. Two single nucleotide polymorphisms (SNPs) in ERCC1 gene, T19007C (rs11615) and C8092A (rs3212986), reportedly predict to affect the mRNA of ERCC1 in non-small cell lung cancer (NSCLC). To examine the role of two common SNPs in ERCC1 gene further, we conducted this study where 80 cases histopatologically diagnosed as NSCLC were genotyped. Genomic DNA was extracted from formalin-fixed, paraffin embedded tissues and two SNPs were analyzed using real-time PCR. The distributions of TT, TC, and CC genotypes of the T19007C SNP were 40, 44 and 16%, respectively. Significantly increased frequency of the patients carrying at least one 19007C allele was observed in early stage compared to advanced stage (P = 0.002). And also, the frequency of TC and CC genotypes significantly increased in younger patients compared to older patients (P = 0.035). Regarding C8092A SNP, the distribution of CC, CA, and AA genotypes was 38, 51 and 11%, respectively. There was no significant difference in the genotype distribution between C8092A SNP and clinicopathological parameters. This study indicated that harboring at least one 19007C allele may have protective effect in NSCLC. © 2011 Springer Science+Business Media B.V. |
Databáze: | OpenAIRE |
Externí odkaz: |