Representation Theory of Solvable Lie Groups and Related Topics
Autor: | Jean Ludwig, Hidenori Fujiwara, Ali Baklouti |
---|---|
Přispěvatelé: | Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques et leurs Applications de Valenciennes - EA 4015 (LAMAV), Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), Nara Institute of Science and Technology - Graduate School of Information Science (NAIST), Nara Institute of Science and Technology |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Springer International Publishing, 2021, Springer Monographs in Mathematics, 978-3-030-82043-5. ⟨10.1007/978-3-030-82044-2⟩ Springer Monographs in Mathematics ISBN: 9783030820435 Springer Monographs in Mathematics |
DOI: | 10.1007/978-3-030-82044-2⟩ |
Popis: | International audience; The purpose of the book is to discuss the latest advances in the theory of unitary representations and harmonic analysis for solvable Lie groups. The orbit method created by Kirillov is the most powerful tool to build the ground frame of these theories. Many problems are studied in the nilpotent case, but several obstacles arise when encompassing exponentially solvable settings. The book offers the most recent solutions to a number of open questions that arose over the last decades, presents the newest related results, and offers an alluring platform for progressing in this research area. The book is unique in the literature for which the readership extends to graduate students, researchers, and beginners in the fields of harmonic analysis on solvable homogeneous spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |