Some Notes on MRA with Polyharmonic Splines
Autor: | Barbara Bacchelli, Theodore E. Simos, George Psihoyios, Ch. Tsitouras |
---|---|
Přispěvatelé: | Theodore E.Simos , G.Psihoyios and Ch.Tsitouras, Psihoyios, G, Tsitouras, C, Bacchelli, B |
Rok vydání: | 2010 |
Předmět: |
Mathematics::Functional Analysis
Multiresolution analysis Mathematical analysis Polyharmonic splines Mathematics::Spectral Theory Mathematics::Numerical Analysis Regularity Polyharmonic spline symbols.namesake Fourier transform Fourier analysis Operational calculus symbols Applied mathematics Multiresolution Thin plate spline MAT/05 - ANALISI MATEMATICA Laplace operator Complement (set theory) Mathematics |
Zdroj: | AIP Conference Proceedings. |
ISSN: | 0094-243X |
DOI: | 10.1063/1.3498525 |
Popis: | It is known that multiresolution analysis (MRA) of L2(ℝ d) can be made by using polyharmonic spline functions. These are tempered distributions which are annihilated by the iterate of the Laplacian operator in the complement of a discrete set and which admit continuous derivatives up to some order r. Here we prove that the admissible derivatives of the cardinal Lagrangian polyharmonic spline have exponential decay, deducing the r-regularity of the MRA for any acceptable dilation matrix |
Databáze: | OpenAIRE |
Externí odkaz: |