Towards the Green-Griffiths-Lang conjecture via equivariant localisation
Autor: | Gergely Bérczi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
Conjecture
Degree (graph theory) Jet (mathematics) Subvariety Mathematics::Complex Variables General Mathematics 010102 general mathematics 32Q45 (primary) Holomorphic function Algebraic variety Type (model theory) 01 natural sciences 55N91 Combinatorics Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry 0103 physical sciences FOS: Mathematics Equivariant map 010307 mathematical physics 0101 mathematics Algebraic Geometry (math.AG) Mathematics 14E15 (secondary) |
Zdroj: | Bérczi, G 2019, ' Towards the Green–Griffiths–Lang conjecture via equivariant localisation ', Proceedings of the London Mathematical Society, vol. 118, no. 5, pp. 1057-1083 . https://doi.org/10.1112/plms.12197 |
DOI: | 10.1112/plms.12197 |
Popis: | The Green-Griffiths-Lang conjecture says that for every complex projective algebraic variety $X$ of general type there exists a proper algebraic subvariety of $X$ containing all nonconstant entire holomorphic curves $f:\mathbb{C} \to X$. Using equivariant localisation on the Demailly-Semple jet differentials bundle we give an affirmative answer to this conjecture for generic projective hypersurfaces $X \subset \mathbb{P}^{n+1}$ of degree $\mathrm{deg}(X) \ge n^{9n}$. This paper is a rewritten version of the first part of arXiv:1011.4710/v1 |
Databáze: | OpenAIRE |
Externí odkaz: |