Measurements of the branching fractions of $\Xi_c^0 \to \Lambda K_S^0$, $\Xi_c^0 \to \Sigma^0 K_S^0$, and $\Xi_c^0 \to \Sigma^+ K^-$ decays at Belle

+Lambda+K0%28S%29%22&type=SU">Xi/c0 --> Lambda K0(S), annihilation [electron positron], electron positron: annihilation, Xi/c0 --> Sigma+ K, High Energy Physics - Experiment, Xi/c: hadronic decay, KEK-B, ddc:530, Lambda, Xi/c: decay modes, branching ratio: ratio: measured, branching ratio, ratio, statistical [error], Xi/c0 --> Sigma0 K0(S), electron positron: colliding beams, Xi/c: branching ratio: measured, branching ratio, measured, Sigma, hadronic decay [Xi/c], error: statistical, High Energy Physics - Phenomenology, K0(S), colliding beams [electron positron], branching ratio: measured [Xi/c], ratio: measured [branching ratio], statistical, experimental results -->
Popis: Physical review / D 105(1), L011102 (2022). doi:10.1103/PhysRevD.105.L011102
Using the entire data sample of 980~fb$^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we present measurements of the branching fractions of the Cabibbo-favored decays $\Xi_c^0 \to \Lambda K_S^0$, $\Xi_c^0 \to \Sigma^0 K_S^0$, and $\Xi_c^0 \to \Sigma^+ K^-$. Taking the decay $\Xi_c^0 \to \Xi^- \pi^+$ as the normalization mode, we measure the branching fraction ratio ${\cal B}(\Xi_c^0 \to \Lambda K_S^0)/{\cal B}(\Xi_c^0 \to \Xi^- \pi^+) = 0.229\pm0.008\pm0.012$ with improved precision, and measure the branching fraction ratios ${\cal B}(\Xi_c^0 \to \Sigma^0 K_S^0)/{\cal B}(\Xi_c^0 \to \Xi^- \pi^+) = 0.038\pm0.006\pm0.004$ and ${\cal B}(\Xi_c^0 \to \Sigma^+ K^-)/{\cal B}(\Xi_c^0 \to \Xi^- \pi^+) = 0.123\pm0.007\pm0.010$ for the first time. Taking into account the previously measured branching fraction ${\cal B}(\Xi_c^0 \to \Xi^- \pi^+) = (1.80\pm0.52)\%$, the absolute branching fractions are determined to be ${\cal B}(\Xi_c^0 \to \Lambda K_S^0) = (4.12\pm 0.14\pm0.21\pm1.19) \times 10^{-3}$, ${\cal B}(\Xi_c^0 \to \Sigma^0 K_S^0) = (0.69\pm 0.10\pm 0.08\pm 0.20) \times 10^{-3}$, and ${\cal B}(\Xi_c^0 \to \Sigma^+ K^-) = (2.21\pm 0.13\pm0.19\pm 0.64) \times 10^{-3}$. The first and second uncertainties above are statistical and systematic, respectively, while the third ones arise from the uncertainty of the branching fraction of $\Xi_c^0 \to \Xi^- \pi^+$.
Published by Inst., Woodbury, NY
Jazyk: English
DOI: 10.1103/PhysRevD.105.L011102
DOI: 10.3204/PUBDB-2021-04710
Přístupová URL adresa: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2b7cef33dfff26fef2a5be4ff418773a
https://repository.gsi.de/record/246985
Rights: OPEN
Přírůstkové číslo: edsair.doi.dedup.....2b7cef33dfff26fef2a5be4ff418773a
Autor: Belle collaboration, Li, Y., Cui, J. X., Jia, S., Shen, C. P., Adachi, I., Ahn, J. K., Aihara, H., Said, S. Al, Asner, D. M., Atmacan, H., Aushev, T., Ayad, R., Babu, V., Bahinipati, S., Behera, P., Belous, K., Bennett, J., Bessner, M., Bhardwaj, V., Bhuyan, B., Bilka, T., Bobrov, A., Bodrov, D., Bonvicini, G., Borah, J., Bozek, A., Bračko, M., Branchini, P., Browder, T. E., Budano, A., Campajola, M., Červenkov, D., Chang, M. C., Chang, P., Chen, A., Cheon, B. G., Chilikin, K., Cho, H. E., Cho, K., Cho, S. -J., Choi, S. K., Choi, Y., Choudhury, S., Cinabro, D., Cunliffe, S., Das, S., De Nardo, G., De Pietro, G., Dhamija, R., Di Capua, F., Dingfelder, J., Doležal, Z., Dong, T. V., Dossett, D., Epifanov, D., Ferber, T., Frey, A., Fulsom, B. G., Garg, R., Gaur, V., Gabyshev, N., Giri, A., Goldenzweig, P., Gu, T., Gudkova, K., Hadjivasiliou, C., Halder, S., Hartbrich, O., Hayasaka, K., Hayashii, H., Hedges, M. T., Hou, W. S., Hsu, C. -L., Iijima, T., Inami, K., Inguglia, G., Ishikawa, A., Itoh, R., Iwasaki, M., Iwasaki, Y., obs, W. W. Ja, Jang, E. J., Jin, Y., Joo, K. K., Kahn, J., Kaliyar, A. B., Kawasaki, T., Kiesling, C., Kim, C. H., Kim, D. Y., Kim, K. H., Kim, Y. K., Kinoshita, K., Kodyš, P., Konno, T., Korobov, A., Korpar, S., Kovalenko, E., Križan, P., Kroeger, R., Krokovny, P., Kuhr, T., Kumar, M., Kumar, R., Kumara, K., Kuzmin, A., Kwon, Y. -J., Lai, Y. T., Lam, T., Lange, J. S., Laurenza, M., Lee, S. C., Li, C. H., Li, J., Li, L. K., Li, Y. B., Gioi, L. Li, Libby, J., Lieret, K., Liventsev, D., Martini, A., Masuda, M., Matsuda, T., Matvienko, D., Meier, F., Merola, M., Metzner, F., Miyabayashi, K., Mizuk, R., Mohanty, G. B., Mussa, R., Nakao, M., Natkaniec, Z., Natochii, A., Nayak, L., Nayak, M., Niiyama, M., Nisar, N. K., Nishida, S., Ogawa, K., Ogawa, S., Ono, H., Oskin, P., Pakhlov, P., Pakhlova, G., Pang, T., Pardi, S., Park, S. H., Patra, S., Paul, S., Pedlar, T. K., Pestotnik, R., Piilonen, L. E., Podobnik, T., Popov, V., Prencipe, E., Prim, M. T., Röhrken, M., Rostomyan, A., Rout, N., Russo, G., Sahoo, D., Sandilya, S., Sangal, A., Santelj, L., Sanuki, T., Savinov, V., Schnell, G., Schwanda, C., Seino, Y., Senyo, K., Sevior, M. E., Shapkin, M., Sharma, C., Shiu, J. -G., Shwartz, B., Singh, J. B., Sokolov, A., Solovieva, E., Stanič, S., Starič, M., Stottler, Z. S., Strube, J. F., Sumihama, M., Sumiyoshi, T., Takizawa, M., Tamponi, U., Tanida, K., Tenchini, F., Uchida, M., Unno, Y., Uno, K., Uno, S., Urquijo, P., Usov, Y., Van Tonder, R., Varner, G., Vinokurova, A., Waheed, E., Wang, E., Wang, M. Z., Watanabe, M., Watanuki, S., Werbycka, O., Won, E., Yabsley, B. D., Yan, W., Yang, S. B., Ye, H., Yelton, J., Yuan, C. Z., Zhai, Y., Zhang, Z. P., Zhilich, V., Zhukova, V.
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Physical review / D 105(1), L011102 (2022). doi:10.1103/PhysRevD.105.L011102
DOI: 10.1103/PhysRevD.105.L011102
Popis: Physical review / D 105(1), L011102 (2022). doi:10.1103/PhysRevD.105.L011102
Using the entire data sample of 980~fb$^{-1}$ collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider, we present measurements of the branching fractions of the Cabibbo-favored decays $\Xi_c^0 \to \Lambda K_S^0$, $\Xi_c^0 \to \Sigma^0 K_S^0$, and $\Xi_c^0 \to \Sigma^+ K^-$. Taking the decay $\Xi_c^0 \to \Xi^- \pi^+$ as the normalization mode, we measure the branching fraction ratio ${\cal B}(\Xi_c^0 \to \Lambda K_S^0)/{\cal B}(\Xi_c^0 \to \Xi^- \pi^+) = 0.229\pm0.008\pm0.012$ with improved precision, and measure the branching fraction ratios ${\cal B}(\Xi_c^0 \to \Sigma^0 K_S^0)/{\cal B}(\Xi_c^0 \to \Xi^- \pi^+) = 0.038\pm0.006\pm0.004$ and ${\cal B}(\Xi_c^0 \to \Sigma^+ K^-)/{\cal B}(\Xi_c^0 \to \Xi^- \pi^+) = 0.123\pm0.007\pm0.010$ for the first time. Taking into account the previously measured branching fraction ${\cal B}(\Xi_c^0 \to \Xi^- \pi^+) = (1.80\pm0.52)\%$, the absolute branching fractions are determined to be ${\cal B}(\Xi_c^0 \to \Lambda K_S^0) = (4.12\pm 0.14\pm0.21\pm1.19) \times 10^{-3}$, ${\cal B}(\Xi_c^0 \to \Sigma^0 K_S^0) = (0.69\pm 0.10\pm 0.08\pm 0.20) \times 10^{-3}$, and ${\cal B}(\Xi_c^0 \to \Sigma^+ K^-) = (2.21\pm 0.13\pm0.19\pm 0.64) \times 10^{-3}$. The first and second uncertainties above are statistical and systematic, respectively, while the third ones arise from the uncertainty of the branching fraction of $\Xi_c^0 \to \Xi^- \pi^+$.
Published by Inst., Woodbury, NY
Databáze: OpenAIRE