Mathematical and numerical analysis of initial boundary valueproblem for a linear nonlocal equation
Autor: | Mateusz Wróbel |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Numerical Analysis
General Computer Science Anomalous diffusion Applied Mathematics Numerical analysis Mathematical analysis Domain (mathematical analysis) Theoretical Computer Science Modeling and Simulation Scheme (mathematics) Bounded function Fractional Laplacian Numerical method Anomalous diffusion equation Boundary value problem Mathematics |
Zdroj: | Mathematics and Computers in Simulation. 166:113-125 |
ISSN: | 0378-4754 |
DOI: | 10.1016/j.matcom.2019.04.011 |
Popis: | We propose and study a numerical scheme for bounded distributional solutions of the initial boundary value problem for the anomalous diffusion equation ∂t u +Lμu = 0 in a bounded domain supplemented with inhomogeneous boundary conditions. Here Lμ is a class of nonlocal operators including fractional Laplacian. ⃝c 2019 InternationalAssociation forMathematics andComputers in Simulation (IMACS). Published by ElsevierB.V.All rights reserved. |
Databáze: | OpenAIRE |
Externí odkaz: |