A Variational Formulation for Dirac Operators in Bounded Domains. Applications to Spectral Geometric Inequalities

Autor: Vladimir Lotoreichik, Rafael D. Benguria, Thomas Ourmières-Bonafos, Pedro R. S. Antunes
Přispěvatelé: Universidade Aberta [Lisboa], Grupo de Física Matemática - Group of Mathematical Physics (GFM), Universidade de Lisboa = University of Lisbon (ULISBOA), Pontificia Universidad Católica de Chile (UC), Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences [Prague] (CAS), Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Universidade de Lisboa (ULISBOA), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Rok vydání: 2021
Předmět:
Zdroj: Communications in Mathematical Physics
Communications in Mathematical Physics, 2021, ⟨10.1007/s00220-021-03959-6⟩
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
ISSN: 1432-0916
0010-3616
DOI: 10.1007/s00220-021-03959-6
Popis: We investigate spectral features of the Dirac operator with infinite mass boundary conditions in a smooth bounded domain of $\mathbb{R}^2$. Motivated by spectral geometric inequalities, we prove a non-linear variational formulation to characterize its principal eigenvalue. This characterization turns out to be very robust and allows for a simple proof of a Szeg\"o type inequality as well as a new reformulation of a Faber-Krahn type inequality for this operator. The paper is complemented with strong numerical evidences supporting the existence of a Faber-Krahn type inequality.
Comment: 34 pages, 4 figures
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje