Duality of Codes over Non-unital Rings of Order Four

Autor: Adel Alahmadi, Asmaa Melaibari, Patrick Solé
Přispěvatelé: King Abdul Aziz University (KAU), Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: IEEE Access
IEEE Access, 2023, 30, pp.1-1. ⟨10.1109/ACCESS.2023.3261131⟩
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2023.3261131⟩
Popis: International audience; In this paper, we present a basic theory of the duality of linear codes over three of the non-unital rings of order four; namely I, E , and H as denoted in (Fine, 1993). A new notion of duality is introduced in the case of the non-commutative ring E . The notion of self-dual codes with respect to this duality coincides with that of quasi self-dual codes over E as introduced in (Alahmadi et al , 2022). We characterize self-dual codes and LCD codes over the three rings, and investigate the properties of their corresponding additive codes over F 4 . We study the connection between the dual of any linear code over these rings and the dual of its associated binary codes. A MacWilliams formula is established for linear codes over E .
Databáze: OpenAIRE